
1

Density 2.00 implementation
Jul 13, 2018, Giuseppe Campana

giu.campana@gmail.com

Index
1. Introduction..1

Paged memory management...3
2. Overview of paged memory management...3
3. SingletonPtr...5
4. Raw atomics...6
5. WF_PageStack...7
6. Implementation of the page allocator..8

Lifo memory management...10
7. The lifo allocator..10
8. The data-stack..13

Heterogeneous and function queues...15
9. Introduction to type erasure...15
10. The RuntimeType pseudo-concept..18
11. Overview of the heterogeneous queues...20
12. Anatomy of a queue...26
13. The lock-free queue...28
14. Lock-free queue – the producer layer..32
15. Lock-free queue – the consumer layer...39
16. Function queues...40

1. Introduction

This document describes the implementation of the library density1. The exposition is bottom-up,
from the most primitive functionalities to the public data structures. Trivial parts are not covered,
while in the critical parts the exposition reaches the source-line level of detail. The document is at
the same time an overview of the library, more technical than the one available in the documenta-
tion. This document assumes a basic knowledge of non-blocking programming. On Wikipedia there
is an excellent introduction to this topic2.

Density is a C++11 library that provides:

• Page-based memory management: rather than allocating many small blocks of heap mem-
ory, all the data structures of the library prefer allocating large memory pages from a page
allocator. All the pages have the same size (by default around 64 kibibytes). In the unlikely
case that a single object is too big to fit in a page, it is allocated on the legacy heap.

1 https://github.com/giucamp/density

2https://en.wikipedia.org/wiki/Non-blocking_algorithm

mailto:giu.campana@gmail.com
https://en.wikipedia.org/wiki/Non-blocking_algorithm
https://github.com/giucamp/density

2

• Lifo ordered allocation of heterogeneous objects, useful for thread-local temporary data. The
library introduces the data-stack, a stack (parallel to the call-stack) in which the user can al-
locate dynamic arrays or raw buffers. The lifo memory management is built upon the
paged-memory management, so the data stack is actually composed by memory pages. Allo-
cating on the data-stack is fast almost like allocating on the call-stack with _alloca, but
never results in a stack overflows. In case of out of system memory an std::bad_alloc is
thrown.

• Fifo ordered allocation of heterogeneous objects, useful for exchanging messages between
threads, or for asynchronous processing in both single-thread and multi-thread scenarios.
The library provides a rich set of heterogeneous queues and function queues:

• Concurrency with parametric progress guarantee (blocking, obstruction-free, lock-free and
wait-free). The user specifies a progress guarantee with a parameter, and the implementation
does its best to successfully complete the operation respecting it. In case that the implemen-
tation can't respect the guarantee, the call fails and has no observable side effects.

This is the summary of the heterogeneous queues and function queues provided by the library:

Threading
strategy

Heterogeneous
queue

Function queue Producers
cardinality

Consumers
cardinality

single-thread heter_queue function_queue none none

locking conc_heter_queue conc_function_queue multiple multiple

lock-free lf_heter_queue lf_function_queue single or multiple single or multiple

spin-locking sp_heter_queue sp_function_queue single or multiple single or multiple

Some miscellaneous notes about the library and the current implementation:

• The current implementation does not differentiate between obstruction-free and lock-free
guarantees: when an obstruction-free operation is requested, the library tries to complete it
in lock-freedom.

• Atomic operations are currently forced to be sequential consistent by a centralized constexpr
switch. Future versions may exploit relaxed atomic operations.

• The library currently performs pointer arithmetic with uintptr_t addresses. While not porta-
ble, this is actually safe on most compilers and platforms. Anyway future versions may use
char* instead of uintptr_t.

• All the data structures of the library provide the strong exception guarantee on all the opera-
tions.

The results of some benchmarks are available at http://giucamp.github.io/density/doc/html/lifo_ar-
ray_benchmarks.html and http://giucamp.github.io/density/doc/html/function_queue_benchmark-
s.html.

http://giucamp.github.io/density/doc/html/function_queue_benchmarks.html
http://giucamp.github.io/density/doc/html/function_queue_benchmarks.html
http://giucamp.github.io/density/doc/html/lifo_array_benchmarks.html
http://giucamp.github.io/density/doc/html/lifo_array_benchmarks.html

3

Paged memory management

2. Overview of paged memory management

The library implements a page-based memory management. Grouping logically adjacent heteroge-
neous objects in large memory pages (instead of allocating each object in a separate heap block) im-
proves the access locality, and increases the granularity of every memory-management related task,
including safe indirections in lock-free algorithms.

Memory pages have a constant size and a constant alignment. The alignment must be greater or
equal to the size (and of course an integer power of tow). Given an address of a byte within a page,
we are able to compute the start address of the page applying a bitwise mask. Since the size of
pages can be less than the alignment, page allocators can store some metadata in a page footer
struct. As example, by default the page allocator of density manages pages aligned to 2^16, with a
page size of 2^16 - sizeof(AnInternalPageFooter). The page allocator must guarantee that the
space between the end of a page and the next aligned page in the address space will not be used by
any other allocator. This guarantee will show very useful for the implementation of lifo memory
management.

The data structures allocate many objects of heterogeneous types linearly in the same page and in
the same order in which the user will access the them (in container order). When the free space in a
page is exhausted, another page is allocated. In this case we say that a page switch occurs. A page
switch occurs also when destroying\consuming objects, and a page has no more objects allocated
within. In-page allocation and deallocation are considered the fast path in all the data structures,
while a page switch is the slow path. The data structures of the library never cache free pages. The
page allocator may possibly do that.

There is no limit on the size of objects the user can allocate, so in case of objects too large all data
structures fallback to legacy heap allocation. For this reason allocator types in the library are re-
quired to model two distinct concepts: PagedAllocator and UntypedAllocator. The first will be ex-
posed in this paragraph, while the latter is just a legacy allocator supporting over-alignment with
offset.

To allow safe access to pages in a lock-free context, the page allocator supports pinning. Pinning is
a kind of reference counting: while a page is pinned (that is the reference count is non-zero), even if
the page is deallocated, the allocator will not recycle it for an allocation function, and will not alter
or read its content in any way.

Pinning a page that has been already deallocated is legal. Accessing such page, or doing anything
but unpinning it, triggers an undefined behavior. When encountering a pointer with value P in a data
structure, a thread should pin it, and then it should check whether P is still linked to the data struc-
ture. If not, it has to unpin and retry.

4

Sometimes we need that the pages we link to a data structure have a zeroed content. Lock-free algo-
rithms may use initially zeroed pages to make threads agree on a history of the data which begins
with the zeroed state. We introduce in our allocator functions to allocate pages with zeroed (rather
than undefined) content.

When deallocating a page, we may tell to the allocator that the page is already zeroed. If the page is
still pinned, the deallocating thread guarantees that the page will be zeroed when unpinned. This al-
lows the allocator to return the page to the user as zeroed without having to memset it. The set of
zeroed pages is not distinct from the set of normal pages: being zeroed is a transient property of a
page.

Here is the PageAllocator synopsis:

class PageAllocator
{
public:

static constexpr size_t page_size = ...;
static constexpr size_t page_alignment = ...;

static_assert(is_power_of_2(page_alignment)
&& page_alignment >= page_size, "");

void * allocate_page();
void * try_allocate_page(progress_guarantee) noexcept;
void * allocate_page_zeroed();
void * try_allocate_page_zeroed(progress_guarantee) noexcept;
void deallocate_page(void *) noexcept;
void deallocate_page_zeroed(void *) noexcept;
void pin_page(void *) noexcept;
void unpin_page(void *) noexcept;
bool try_pin_page(progress_guarantee, void *) noexcept;
void unpin_page(progress_guarantee, void *) noexcept;

};

Allocation functions return a pointer to the first byte of the page. Functions taking a page as param-
eter always align the address, so the user can specify a pointer to any byte within the page. The page
allocator and many data structures of the library expose a set of try_* functions. These functions
have some common properties:

• they return a boolean or a type implicitly convertible to boolean. A true return value indi-
cates success, while false return value indicates a failure with no observable side effects.

• they are noexcept or at least exception neutral. Allocation try_* function are always noex-
cept, while put try_* functions don’t throw any exception, though they pass through any ex-
ception raised by the constructor of a user-defined type.

• the first parameter has always the type:

5

enum progress_guarantee {
progress_blocking, progress_obstruction_free,
progress_lock_free, progress_wait_free };

If the implementation can’t guarantee the completion with the specified progress guarantee,
the function fails. A failure with a blocking progress guarantee generally indicates an out of
memory.

Deallocation functions are required to be always wait-free. The rationale for this is that any lock-
free CAS3-based deallocation algorithm, whenever it does not succeed to perform the operation in a
finite number of steps, can push the free page in a thread-local queue, and try later (or satisfy a sub-
sequent request of the same thread).

3. SingletonPtr

Starting from C++11 the initialization of static local objects is thread safe. Since global objects ex-
hibit the initialization order fiasco, static locals are generally safer than globals to implement single-
tons. Anyway, unless zero or constant initialization is possible, the compiler introduces a hidden
atomic initialization guard, so that only the first access will initialize the object. The cpu’s branch
predictor greatly reduces the cost of this branch, but in many cases it can be removed at all.

The implementation of density uses an internal class template that implements the singleton pattern:

template <typename SINGLETON> class SingletonPtr;

This class template has non-nullable pointer semantics. It is stateless (therefore immutable), copy-
able and thread safe. The actual singleton object is handled internally, allocated in the static storage
at a fixed address. Since this address is constant there is no need to store it, and all the specialization
of SingletonPtr are guaranteed to be empty (no non-static data members). The indirection of Sin-
gletonPtr just returns the address of the storage of the singleton.

The singleton is actually initialized when the first SingletonPtr is constructed. When the last Sin-
gletonPtr is destroyed, the singleton is destroyed too (it uses an internal reference count). The cost
of handling the lifetime of the singleton is paid only by the constructor and the destructor. This is an
advantage when we can keep a stable pointer to the singleton, and use repeatedly. For example an
allocator class may keep a SingletonPtr pointing to a memory manager. Everyone who has access
to a SingletonPtr can safely access the singleton.

Internally every specialization of SingletonPtr declares an instance of itself in the static storage, so
that the singleton is always constructed during the dynamic initialization. If another SingletonPtr is
constructed and destroyed before the initialization of this internal instance, the singleton is con-
structed, destroyed, and then constructed again. Similarly if a SingletonPtr is constructed after the
destruction of the internal instance, the singleton is created again.

So SingletonPtr does not guarantee that only one instance of the singleton is created, but rather that
in any moment at most one instance of the singleton exists. In case of contention between threads in

3 Compare and set, compare_exchange_weak and compare_exchange_strong in C++11.

6

the first access, if that happens during the dynamic initialization, a thread may spin-lock waiting for
another thread to complete the initialization of the singleton. This is a defect of the current imple-
mentation, and will be probably fixed in a future release.

4. Raw atomics

Sometimes in lock free algorithms we can’t use std::atomic, because even if standard atomics are
trivially default-constructible, a default constructed atomic requires a call to std::atomic_init to
complete the initialization. So we introduce a minimal set of non-standard of functions for atomic
operations on fundamental variables:

template <typename TYPE>
TYPE raw_atomic_load(

TYPE const volatile * i_atomic,
std::memory_order i_memory_order) noexcept;

template <typename TYPE>
void raw_atomic_store(

TYPE volatile * i_atomic,
TYPE i_value,
std::memory_order i_memory_order) noexcept;

template <typename TYPE>
bool raw_atomic_compare_exchange_weak(

TYPE volatile * i_atomic,
TYPE * i_expected,
TYPE i_desired,
std::memory_order i_success,
std::memory_order i_failure) noexcept;

template <typename TYPE>
bool raw_atomic_compare_exchange_strong(

TYPE volatile * i_atomic,
TYPE * i_expected,
TYPE i_desired,
std::memory_order i_success,
std::memory_order i_failure) noexcept;

In the declarations above the default value for the memory order parameters is omitted (it is always
std::memory_order_seq_cst). All the generic function template are deleted. The library specialize
an implementation only for some integer types4.

Raw-atomic functions behave like the standard counterparts. Anyway fundamental variables are
fully trivially constructible, and can be zero-initialized. A second advantage of raw atomics is that in
some (rare) cases we can mix non-atomic and atomic writes to the same variable, if we know for
sure that the non-atomic access is synchronized in some way. The library exploits this kind of mixed
access in single-producer lock-free and spin-locking queues.

4 The reference documentation lists the supported types, anyway uintptr_t is always supported.

7

The implementation of lf_heter_queue we will describe requires raw atomics for uintptr_t. If for a
given compiler or OS raw atomics aren't available, the lock-free queues can’t be used.

5. WF_PageStack

The implementation of the page allocator uses WF_PageStack, a wait-free queue specialized for
pages. The stack is implemented as an intrusive linked list.

namespace density
{
 namespace detail
 {
 class WF_PageStack
 {
 private:
 std::atomic<PageFooter*> m_first{ nullptr };

 public:
 bool try_push(PageFooter * i_page) noexcept;
 bool try_push(PageStack & i_stack) noexcept;
 PageFooter * try_pop_unpinned() noexcept;
 PageStack try_remove_all() noexcept;
 };
 }
}

The class PageStack (used for some member functions) is a non-concurrent stack of pages. All the
operations on WF_PageStack can fail in case of contention between threads. The function
try_pop_unpinned temporary steals the whole stack, then search for the first page with zero pin
count, and then re-links the pages (with possibly one less) to the stack. Stealing the whole content is
an easy and elegant way to avoid the ABA problem.

6. Implementation of the page allocator

The page management is composed by 3 layers. The lowest
layer is the SystemPageManager, that exposes a public func-
tion to allocate a memory page, but no function to deallo-
cate. So it provides an irreversible allocation service.

Internally the SystemPageManager allocates large memory
regions from the system and slices them into pages. Every
region has a pointer to the next page to allocate. When a
page is to be allocated, this pointer is advanced by the size
of a page, and then its previous value is returned. When the
current region is exhausted, another region is created. If the
SystemPageManager gets an out of memory from the system
when allocating a region, it tries to allocate a smaller re-

system

SystemPageManager

 allocates from

PageAllocator

 allocates from

basic_void_allocator

 allocates from deallocates to

8

gion. After a number of failed tries with decreasing sizes, it reports the failure to the caller. Memory
regions are deallocated when the SystemPageManager is destroyed, that is when the program exits.

The function of SystemPageManager that allocates a page is try_allocate_page:

void * SystemPageManager::try_allocate_page(
progress_guarantee i_progress_guarantee) noexcept;

On success it returns a pointer to the first byte of the page, while in case of failure it returns null.
The conditions under which this function fails depends on the requested progress guarantee, as il-
lustrated in this table:

Progress guarantee Condition failure

progress_blocking Fails only in case of out of system memory

progress_obstruction_free Fails if there is no free space in the memory regions
already allocated, as the allocation of system mem-
ory is likely to be blocking.progress_lock_free

progress_wait_free Fails if there is no free space in the memory regions
already allocated or in case of contention between
threads

The user of SystemPageManager may reserve in advance a capacity of memory usable in lock-free-
dom using the following function:

uintptr_t SystemPageManager::try_reserve_region_memory(
progress_guarantee i_progress_guarantee,
uintptr_t const i_size) noexcept;

The return value is the total memory (in bytes) allocated from the system after the call. If this mem-
ory would be less than the one specified by the second argument, and the caller has specified the
blocking progress guarantee, it tries to allocate memory regions from the system until the total size
is equal or greater than the second parameter. Note: the signature of this function does not respect
the convention on try_ functions. Anyway it is an internal function, and it may change in the future.

The second layer is the PageAllocator, that provides reversible page allocation, with an interface
similar to the PageAllocator concept. In this layer there are a (currently fixed) number of slot, each
containing a WF_PageStack of free pages and a WF_PageStack of free and zeroed pages.

Furthermore the PageAllocator associates to every thread some local data:

• A pointer to the current slot

• A pointer to the victim slot

• A non-concurrent stack of free pages

9

• A non-concurrent stack of free and zeroed pages

When a new page is requested, the PageAllocator tries to satisfy the request executing an ordered
sequence of steps until one of them is successful. More precisely the PageAllocator:

• Peeks the first non-pinned page from the local stack

• Peeks the first non-pinned page from the current slot

• Steals all the pages of the victim slot, pushing them to the current slot. Then peeks the first
non-pinned page from the stolen stack

• Tries to allocate from the SystemPageManager in wait-freedom (no new system memory is al-
located)

• Loops the pointer to the victim slot through all the slot, stealing all the pages from each of
them. If a non-pinned page in found in a stolen stack, the loop is interrupted.

• Now, if the progress guarantee specified by the caller is not progress_blocking, the PageAl-
locator returns null to signal a failure. Otherwise it forwards the request to the SystemPage-
Manager, that may try to allocate a new memory region.

To deallocate a page the PageAllocator loops the pointer to the current slot through all the slot. At
every iteration it tries to push the page on the WF_PageStack. The push may fail only because of con-
tention with another thread. If the push fails on all the slots, the page is pushed on the thread-local
stack.

The last layer of the page management is the void_allocator, that just forwards the requests to the
PageAllocator. The layers before the void_allocator don't throw exceptions: they report a failure in
allocating a page with a null return value. The void_allocator is the layer that, in case of failure of
a non-try allocation function, throws an std::bad_alloc.

The user can use two functions of void_allocator e to reserve paged-memory to be used in lock-
freedom:

static void reserve_lockfree_page_memory(size_t i_size,
size_t * o_reserved_size = nullptr);

static bool try_reserve_lockfree_page_memory(
progress_guarantee i_progress_guarantee,
size_t i_size, size_t * o_reserved_size = nullptr) noexcept;

These functions make sure that the specified size is already been allocated from the system. In case
of out of memory the first function throws an std::bad_alloc, while the second one, in case of fail-
ure, just returns false. The parameter o_reserved_size is to retrieve the total memory allocated from
the system after the call.

10

Lifo memory management

7. The lifo allocator

The lifo memory management provided by the library is not thread safe, the reason being that it is
supposed to be used mostly for thread-local data. It is built upon paged-memory management: the
class template lifo_allocator adapts an allocator satisfying the requirements of both PagedAlloca-
tor and UntypedAllocator concepts to expose a LIFO constrained allocation service.

The LIFO order imposes that only the most recently allocated and living block can be resized or
deallocated. If this constraint is violated the behavior is undefined. Dealing with the LIFO order
without the help of the RAII idiom is extremely bug prone, and it's highly discouraged.

This is the signature of the class template:

class lifo_allocator {
template < typename UNDERLYING_ALLOCATOR = void_allocator,
size_t ALIGNMENT = alignof(void*)>

 class lifo_allocator;

To simplify the implementation of the allocator, the alignment is constant and the same for all the
blocks.

The only non-static data member of is the a pointer to the end of the stack, that is the top pointer:

static constexpr uintptr_t s_virgin_top =
uint_lower_align(page_alignment - 1, alignment);

uintptr_t m_top = s_virgin_top;

The top pointer usually points to the beginning of next block that will be allocated. It is an
uintptr_t rather than a pointer to allow the default constructor to be constexpr (reinterpret_cast
is not allowed in constant expressions).

The allocator is designed so that in the fast path, with the same conditional branch, it can redirect to
the same slow execution path these 3 cases:

• the block to allocate is not too big, but the current page has not enough free space

• the block to allocate is too big, and it will not fit in a memory page

• the allocator is virgin, that is it has just been constructed and never used (after allocating a
page the allocator will never return to the virgin state)

To allocate a block the allocator just adds the input size to the top pointer. If it detects that the up -
dated top would lie past the end of the current page, it enters in the slow execution path. In the slow

11

path it decides between a new page or an external block (that is a block allocated in the legacy
heap). When allocating or deallocating external blocks the state of the allocator is not altered.

When a new page is allocated, a header is added at the beginning of the page. This header contains
only a pointer to the previous page, and it is necessary for the deallocation.

void * allocate(size_t i_size)
{

DENSITY_ASSERT(i_size % alignment == 0);

auto const new_top = m_top + i_size;
auto const new_offset = new_top –

uint_lower_align(m_top, page_alignment);
if (!DENSITY_LIKELY(new_offset < page_size))
{

// page overflow
return allocate_slow_path(i_size);

}
else
{

// advance m_top
DENSITY_ASSERT_INTERNAL(i_size <=page_size);
auto const new_block = reinterpret_cast<void*>(m_top);
m_top = new_top;
return new_block;

}
}

DENSITY_NO_INLINE void * allocate_slow_path(size_t i_size)
{

DENSITY_ASSERT_INTERNAL(i_size % alignment == 0);
if (i_size < page_size / 2)
{

// allocate a new page
auto const new_page =

UNDERLYING_ALLOCATOR::allocate_page();
DENSITY_ASSERT_INTERNAL(new_page != nullptr);
auto const new_header = new(new_page) PageHeader;
new_header->m_prev_page = reinterpret_cast<void*>(

m_top);
m_top = reinterpret_cast<uintptr_t>(

new_header + 1) + i_size;
return new_header + 1;

}
else
{

// external block
return UNDERLYING_ALLOCATOR::allocate(

i_size, alignment);
}

}

12

The function allocate requires that the size of the block is aligned, otherwise the behavior is unde-
fined. allocate can allocate a block with size zero. Anyway there is a special allocation function
that can be used when the size of the block is always zero:

void * allocate_empty() noexcept
{

return reinterpret_cast<void*>(m_top);
}

This function does not alter the state of the queue, is faster and never throws. Note that it may return
the virgin-allocator marker, but the user does not have to handle this as a special case.

The allocator uses a delayed deallocation strategy for the pages: a page is not deallocated when it
owns no alive blocks, but rather when a block of the previous page is deallocated. With this strategy
a user that occasionally allocates and deallocates a block will enter in the slow path (and will allo-
cate a page) only the first time.

To deallocate a block, if the address is in the same page of the top pointer, the lifo_allocator just
assigns the block to deallocate to the top pointer. Otherwise it enters the slow path, in which the al-
locator detects whether the top pointer is going to leave an empty page, or it has to deallocate an ex-
ternal block.

void deallocate(void * i_block, size_t i_size) noexcept
{

DENSITY_ASSERT(i_block != nullptr && i_size % alignment == 0);

// this check detects page switches and external blocks
if (!DENSITY_LIKELY(same_page(i_block,

reinterpret_cast<void*>(m_top))))
{

deallocate_slow_path(i_block, i_size);
}
else
{

m_top = reinterpret_cast<uintptr_t>(i_block);
}

}

DENSITY_NO_INLINE void deallocate_slow_path(
void * i_block, size_t i_size) noexcept

{
DENSITY_ASSERT_INTERNAL(i_size % alignment == 0);

if ((m_top & (page_alignment - 1)) == sizeof(PageHeader) &&
same_page(reinterpret_cast<PageHeader*>(
m_top)[-1].m_prev_page, i_block))

{
// deallocate the top page
auto const page_to_deallocate = reinterpret_cast<void*>(

m_top);
UNDERLYING_ALLOCATOR::deallocate_page(

13

page_to_deallocate);
m_top = reinterpret_cast<uintptr_t>(i_block);

}
else
{

// external block
UNDERLYING_ALLOCATOR::deallocate(

i_block, i_size, alignment);
}

}

The allocator allows resizing a block, preserving its content up to the previous size, with the follow-
ing function:

void * reallocate(void * i_block, size_t i_old_size, size_t i_new_size);

The implementation of this function is slightly more complex, but it is basically an exception safe
mixing of allocate and deallocate, so it is not listed here.

8. The data-stack

The library keeps a private thread-local instance of lifo_allocator, called the data-stack. By de-
sign the constructor of lifo_allocator is constexpr, so that the data-stack does not need dynamic
initialization by every thread. Threads may allocate the first page only when they uses the data-
stack for the first time. Direct access to the data-stack is not allowed. Two data structures are pro-
vided instead to use indirectly the data-stack: lifo_array and lifo_buffer.

The class template lifo_array is very similar to an array. It has an immutable size specified at con-
struction time. If no initializer is provided, lifo_array default-constructs the elements. This is a big
difference with to std::vector, that uses value-initialization.

 // uninitialized array of doubles
 lifo_array<double> numbers(7);

 // initialize the array
 for (auto & num : numbers)
 num = 1.;

 // compute the sum
 auto const sum = std::accumulate(

numbers.begin(), numbers.end(), 0.);
 assert(sum == 7.);

 // initialized array
 lifo_array<double> other_numbers(7, 1.);
 auto const other_sum = std::accumulate(

other_numbers.begin(), other_numbers.end(), 0.);
 assert(other_sum == 7.);

 // array of class objects (default-constructed)

14

 lifo_array<std::string> strings(10);
 bool all_empty = std::all_of(strings.begin(), strings.end(),

[](const std::string & i_str) {
 return i_str.empty(); });

 assert(all_empty);

The constructor of lifo_array allows to specify any number of parameters to initialize the ele-
ments. Anyway they must be const l-value references: r-value are not supported, because they fit
only to one-to-one initializations.

It's highly recommended to use lifo_array only on the automatic storage. Doing so there is no way
to break the LIFO constraint. Any other used should be handled with caution.

The class lifo_buffer is very different from lifo_array mainly for 2 reasons:

– it handles raw memory rather than elements of a type known at compile-time

– it allows resizing (with content preservation) of the most recently constructed instance.

Resizing a lifo_buffer when another most recent lifo_buffer or lifo_array is alive causes unde-
fined behavior.

Internally the default-contructor of lifo_buffer uses the function allocate_empty to allocate a
block of size 0, so it is noexcept and very fast.

 void func(size_t i_size)
 {
 using namespace density;

 lifo_buffer buffer_1(i_size);
 assert(buffer_1.size() == i_size);

 lifo_buffer buffer_2; /* now buffer_1 can't be
resized until buffer_2 is destroyed */

 assert(buffer_2.size() == 0);

 auto mem = buffer_2.resize(sizeof(int));
 assert(mem == buffer_2.data());
 static_cast<int>(mem) = 5;

 mem = buffer_2.resize(sizeof(int) * 20);
 assert(*static_cast<int*>(mem) == 5);

 lifo_array<int> other_numbers(7);
 // buffer_2.resize(20); ← other_numbers is more recent, so this

would be a violation of the lifo constraint!
 }

15

Heterogeneous and function queues

9. Introduction to type erasure

Type erasure is a well know technique to decouple actions on objects from their compile-time type.
Let's consider the implementation of a heterogeneous sequence of objects. When we insert an object
in the sequence probably we know the type at compile-time, so we can just call the constructor of
the element. Anyway, when we iterate the sequence, we have no compile-time knowledge of the
types of the objects. Type erasure solves this problem.

The type erasure used by density requires declaring in advance which features should be captured
from the types. Let's suppose for example that we need to be able to write the objects of an hetero-
geneous sequence to an std::ostream. A very simple way to do that is prepending to every element
a pointer to a function that is able to handle the specific object.

The memory layout of this sequence may be something like this:

In this example the type eraser is a pointer to a function with this signature:

void (*)(const void * i_object, std::ostream & i_stream);

A trivial consideration is that a universal implementation of the write function may be provided by a
function template:

template <typename T>
void write_string(const void * i_object, std::ostream & i_stream)

{
i_stream << *static_cast<const T*>(i_object);

}

16

In a more realistic case we would need to add at least a pointer to a destroy function, so in this case
our type erasure would be a struct containing two pointers to functions. We may even add a variable
with the size of the type, and one with the alignment. If our type eraser has a considerable size, we
may consider to add a level of indirection: the type eraser becomes a pointer to a static constexpr
struct with the actual pointer to functions and data.

The above example is simplified, but is very similar to the type erasure used by density. Note that
this technique is similar to the v-table used by the C++ compilers to implement virtual functions.
The main advantages are:

– it’s easily customizable. For example one may add data members (for example for the size
and alignment of the target type), and even pointer to construction functions, while virtual
static data and virtual constructors are currently not supported by the standard.

– it’s not intrusive, while virtual function are a feature embedded in the type. A class can be
type-erased without being modified.

Here follows a small digression on the advantages of using type erasure for polymorphism. The
reader not interested may skip to the next paragraph.

Let's suppose we have a set of classes representing 2d shapes:

class Circle
{
public:

 bool IsPointInside(const Vector2d & i_point) const;

private:
 Vector2d m_center;
 float m_radius = -1.f;
};

class Box
{
public:

 bool IsPointInside(const Vector2d & i_point) const;

private:
 Vector2d m_center, m_size{-1.f, -1.f};
};

Now we want to implement a class ComplexShape, that represent a union of other shapes. Com-
plexShape provides a function IsPointInside that checks if the point is inside any of the child
shapes. The classic OOP solution would be introducing a base class or an interface representing a
shape, with a virtual function IsPointInside. Anyway interfaces and base classes have impact on
both the design and the performances. Any instance of Box would have a pointer to a v-table as hid-
den member, even if polymorphous is not necessary for all the uses.

17

Instead of using polymorphism, we may implement ComplexShape using type erasure:

class ShapeReference
{
public:

 // ...

 bool IsPointInside(const Vector2d & i_point) const
 {
 return (*m_type->m_is_point_inside)(m_object, i_point);
 }

private:
 struct Type
 {
 bool (*m_is_point_inside)(void * const i_object,

const Vector2d & i_point);
 void (*m_destroy_func)(void * i_object);
 };
 void * m_object;
 Type * m_type;
};

class ComplexShape
{
 // ...
private:
 std::vector<ShapeReference> m_children;
};

With type-erasure, polymorphism is paid only when it's actually used.

10. The RuntimeType pseudo-concept

The heterogeneous queues provided by the library are not bound to a particular type-erasure. They
have instead a type template-parameter that allows the user to specify a custom type erasure, pro-
vided that it models RuntimeType.

Here is the RuntimeType synopsis:

class RuntimeType
{
public:

 template <typename TYPE>
 static RuntimeType make() noexcept;

 template <typename TYPE>
 bool is() const noexcept;

18

 RuntimeType(const RuntimeType &);

 size_t size() const noexcept;

 size_t alignment() const noexcept;

 void default_construct(void * i_dest) const;

 void copy_construct(void * i_dest,
const void * i_source) const;

 void move_construct(void * i_dest,
void * i_source) const;

 void * destroy(void * i_dest) const noexcept;

 const std::type_info & type_info() const noexcept;

 bool are_equal(const void * i_first,
const void * i_second) const;

 bool operator == (
const RuntimeType & i_other) const noexcept;

 bool operator != (
const RuntimeType & i_other) const noexcept;

};

Most of these functions are optional, so RuntimeType strictly can't be a concept.

The static function template make performs the transition from a type known at compile-time to an
instance of RuntimeType that has no compile-time dependence from the type. The type bound to a
RuntimeType is the target type.

By default all the heterogeneous queues of the library use the class template runtime_type for type
erasure. A runtime_type internally is just a pointer to a custom v-table containing data and pointer
to functions to capture a set of features on the target type. This is the signature of the class template:

template <typename... FEATURES> class runtime_type;

runtime_type is highly customizable, as it allows to specify the set of feature to capture as template
arguments. The namespace density::type_features provides many common features ready to be
used. The user may also define custom type features. This table enumerates the features that a run-
time_type captures with the default feature list:

Feature What allows on runtime_type

f_size Allows to use the function runtime_type::size to get the size
of the target type

f_alignment Allows to use the function runtime_type::alignment to get the

19

Feature What allows on runtime_type

size of the target type

f_rtti Allows to use the function runtime_type::type_info to get a
std::type_info for the target type

f_destroy Allows to use the function runtime_type::destroy to destroy an
instance of the target type

f_copy_construct Allows to use the function runtime_type::copy_construct to
move-construct an instance of the target type from an instance
of the same type

f_move_construct Allows to use the function runtime_type::move_construct to
copy-construct an instance of the target type from an instance of
the same type

See the reference doc of runtime_type at for more information.

11. Overview of the heterogeneous queues

The library provides 4 heterogeneous queues:

• heter_queue: not thread safe

• conc_heter_queue: thread safe, blocking

• lf_heter_queue: thread safe, lock-free

• sp_heter_queue: thread safe, spin-locking

The first 2 template parameters of all the heterogeneous queues are:

• RUNTIME_TYPE, type parameter, by default runtime_type<>. It’s the type-eraser.

• ALLOCATOR_TYPE, type parameter, by default void_allocator. It must meet the requirements
of both PageAllocator and UntypedAllocator.

The class template lf_heter_queue has these additional template parameters:

• PRODUCER_CARDINALITY, parameter of type concurrency_cardinality, the default value is
concurrency_multiple. Specifies whether multiple threads are allowed to put in the queue
concurrently.

http://giucamp.github.io/density/doc/html/classdensity_1_1runtime__type.html

20

• CONSUMER_CARDINALITY. parameter of type concurrency_cardinality, the default value is
concurrency_multiple. Specifies whether multiple threads are allowed to consume from the
queue concurrently.

• CONSISTENCY_MODEL, parameter of type consistency_model, the default value is consis-
tency_sequential. Specifies whether the queue is linearizable, that is all the threads agree
on a total ordering of all the operations on the queue.

The class template sp_heter_queue has these additional template parameters:

• PRODUCER_CARDINALITY. Like the homonymous parameter of lf_heter_queue.

• CONSUMER_CARDINALITY. Like the homonymous parameter of lf_heter_queue.

• BUSY_WAIT_FUNC. Type callable with the signature void () that is called in the body of a busy
wait. The default value is a function type that calls std::this_thread::yield.

An action on the queue is an operation. Some operations are executed by a single function call,
while some others span more than one call. Every operation belongs to one of these classes:

• put operations: operations that inserts an element to the end of the queue.

• consume operations: operations that consume an element at the beginning of the queue, or
that check if the queue is empty.

• lifetime operations: all the other functions, including constructors, destructors, assignments
and swap.

Depending on the queue and on the template arguments, put and consume operations can be used
concurrently. All the queues define a set of member constants that describe the concurrent capabili-
ties of the queue:

Member constant Semantics

static constexpr bool concurrent_puts; Whether multiple threads are allowed to do
put operations concurrently.

static constexpr bool concurrent_consumes; Whether multiple threads are allowed to do
consume operations concurrently.

static constexpr bool concurrent_put_consumes; Whether put operations can be executed
concurrently with consume operations.

static constexpr bool is_seq_cst; Whether the queue is linearizable, that is all

21

Member constant Semantics

the threads agree on a total ordering of all
the operations on the queue.

heter_queue is not concurrent, so all the above constants are false, while conc_heter_queue is al-
ways fully concurrent, so all the above constants are true.

lf_heter_queue and sp_heter_queue always allows a single producer to run concurrently with a sin-
gle consumer, so concurrent_put_consumes is always true. The values of concurrent_puts and con-
current_consumes depends on the template arguments PRODUCER_CARDINALITY and CONSUMER_CARDI-
NALITY. The constant is_seq_cst is always true for sp_heter_queue, and depends on the template ar-
gument CONSISTENCY_MODEL for lf_heter_queue.

The simplest way to put an element in a queue is using push or emplace:

queue.push(19); // the parameter can be an l-value or an r-value
queue.emplace<std::string>(8, '*'); // pushes "********"

The type of the element is deduced from the argument in the case of push, but needs to be specified
explicitly in the case of emplace.

Put functions containing start_ in their name are transactional. They start a put, and return an ob-
ject of type put_transaction, that can be used to commit or cancel the put.

auto put = queue.start_push(12);
put.element() += 2;
put.commit(); // commits a 14

A put transaction becomes observable only when it’s committed. If it is canceled, it will never be
observable.

An instance of put_transaction in any moment either is bound to a transaction, or is empty. When
the functions commit or cancel are called, the put_transaction becomes empty. If the put_transac-
tion is already empty, calling commit or cancel causes undefined behavior. When a non-empty
put_transaction is destroyed, the transaction is canceled. put_transaction is movable but not
copyable.

Transactional puts allow to associate a raw block with the element:

heter_queue<> queue;
struct MessageInABottle
{
 const char * m_text = nullptr;
};
auto transaction = queue.start_emplace<MessageInABottle>();
transaction.element().m_text = transaction.raw_allocate_copy("Hello!");
transaction.commit();

22

A raw block is an untyped and uninitialized range of contiguous memory, in which the user may
store additional data associated to an element. An element may be associated to more than one
block, but it should keep a pointer to every of them, because otherwise consumers would have no
way to get these addresses.

Raw blocks can be allocated specifying a size and an alignment, a pair of iterators, or a range (like
in the example). A raw block is automatically deallocated when the put of the associated element is
canceled, or when the element is consumed. Accessing a deallocated raw block causes undefined
behavior.

By default operations on queues are non-reentrant. During a non-re-entrant operation the queue is
not in a consistent state for the calling thread (though it is in a consistent state for the other threads,
provided that it is concurrency-enabled). So, in the example above, calling any member function on
the queue between the start_emplace and the commit would cause undefined behavior. Even a sin-
gle-call put may introduce re-entrancy:

// buggy code:
queue.emplace<ClassThatUsesTheQueueInTheConstructor>(12); <- UB!!!!

The operations that starts with a function containing reentrant_ in their name support re-entrancy.
Re-entrant operations can overlap each other.

auto put_1 = queue.start_reentrant_push(12);
auto put_2 = queue.start_reentrant_emplace<std::string>("Hello ");
auto put_3 = queue.start_reentrant_push(3.14f);
put_3.commit();
put_1.commit();
put_2.element() += "world!!!!";
put_2.cancel();

Non-re-entrancy allows to the implementation some optimizations and may alter thread synchro-
nization. For example heter_queue starts non-re-entrant puts in the committed state, so that the ac-
tual commit becomes a no-operation (so the observable state of the queue is temporary wrong). A
notable further example is conc_heter_queue, that keeps its internal non-recursive mutex locked
during a non-re-entrant operation, while it locks its mutex twice for re-entrant operations. If the user
starts an operation while a non-re-entrant one is still in progress, the mutex would be locked twice
by the same thread, causing undefined behavior.

Put functions containing dyn_ in their name are dynamic. Dynamic puts inserts elements of a type
unknown at compile-time. The type of the element is specified by an instance of the type-eraser,
passed as first argument. The element can be default-constructed, copy-constructed or move-con-
structed, provided that the type-eraser supports it.

using namespace type_features;
using MyRunTimeType = runtime_type<void, feature_list<

default_construct, destroy, size, alignment>>;
heter_queue<void, MyRunTimeType> queue;
auto const type = MyRunTimeType::make<int>();
queue.dyn_push(type); // appends 0

23

One possible use of dynamic puts is for transferring one element from one queue to another, as
shown in the following example:

using namespace type_features;
using MyRunTimeType = runtime_type<void, feature_list<

move_construct, destroy, size, alignment>>;

heter_queue<void, MyRunTimeType> queue_1;
queue_1.emplace<std::string>("Hello!");

heter_queue<void, MyRunTimeType> queue_2;
auto consume = queue_1.try_start_consume();
queue_2.dyn_push_move(consume.complete_type(), consume.element_ptr());
consume.commit();

consume = queue_2.try_start_consume();
assert(consume && consume.complete_type().is<std::string>());
assert(consume.element<std::string>() == "Hello!");
consume.commit();

assert(queue_1.empty() && queue_2.empty());

Put functions containing try_ in their name allows to specify the progression guarantee as first pa-
rameter, and returns a (possibly empty) put_transaction. Try put functions are supported only by
lf_heter_queue and sp_heter_queue.

The set of put functions is orthogonal: every combination of transnational, re-entrant, dynamic and
try_* is supported. This is a summary of the complete set:

• [try_][start_][reentrant_]push

• [try_][start_][reentrant_]emplace

• [try_][start_][reentrant_]dyn_push

• [try_][start_][reentrant_]dyn_push_copy

• [try_][start_][reentrant_]dyn_push_move

A consume operation is very similar to a put-transaction, but it’s not a transaction. When the con-
sume starts, the element is immediately removed by the queue, so that other consumers will not in-
terfere. Actually the queue does not really move the element, but the other consumers will skip it.
Whenever the consume operation is committed, the element is destroyed, and it’s gone forever.
Anyway if the consume is canceled the element will reappear in the queue, so that the consume can
be retried. This is the reason why consumes are not transactions: even when canceled, they have the
observable effect of temporary removing the element.

 heter_queue<> queue;
 auto consume_1 = queue.try_start_consume();
 assert(!consume_1);

24

 queue.push(42);
 auto consume_2 = queue.try_start_consume();
 assert(consume_2);
 assert(consume_2.element<int>() == 42);
 consume_2.commit();

The following example shows how consumers can analyze the element and its type. Note that if the
same action is needed for all the elements regardless of they type, a type feature would be a much
better solution (there also is a built-in type_feature::ostream that can be used with runtime_type).

heter_queue<> queue;
queue.push(42);
queue.emplace<std::string>("Hello world!");
queue.push(42.);

while (auto consume = queue.try_start_consume())
{
 if(consume.complete_type().is<int>())
 std::cout << "Found an int: "

<< consume.element<int>() << std::endl;
 else if(consume.complete_type().is<std::string>())
 std::cout << "Found a string: "

<< consume.element<std::string>() << std::endl;
 consume.commit();
}

We may rewrite the consume loop in a similar way using another overload of try_start_consume:

heter_queue<>::consume_operation consume;
while (queue.try_start_consume(consume))
{
 ...
 consume.commit();
}

This overload takes as argument a reference to a consume_operation, and returns a boolean. If this
boolean is true, after the call the consume operation is bound to an element. Otherwise it's cleared.
In any case, if the consume operation was already consuming an element before the call, it is can-
celed first.

The overload of try_start_consume taking a consume_operation as parameter is functionally the
same to the other one. Anyway, for lock-free and spin-locking queues, keeping a consume_operation
alive may increase the performances of habitual consumers (the reason will be discussed later).

12. Anatomy of a queue

The storage of a heterogeneous queue is an ordered set of pages and possibly a set of heap memory
blocks. The first page is the head page, while the last is the tail page. The queue has two pointers:
the head pointer, that points to a byte of the head page, and the tail pointer, that point to a byte of
the tail page.

25

The layout of a value is composed by:

• the control block, an internal structure of the library. Every value has one, and contains a
pointer to the next control block in the queue, that it's always in the same page except for the
last value of the page. The least significant bits of this pointer are used to store some status
flag:

◦ busy flag: set whether a put or a consume is in progress on the value.

◦ dead flag: set for values that don't have a valid element

◦ external flag: set for values whose element (or raw block) was too big to be allocated in
the page, so it has been is allocated externally

• optionally the run-time type object, not present for raw allocations.

• optionally the element or the raw block

While an element is being produced or consumed it has the busy-flag set. Consumers skip busy ele-
ments, as they are already being consumed, or they are being initialized.

If a value is dead, it has not a valid element. Dead values arise from:

• elements whose put was canceled (including those whose constructor threw an exception).
Such elements occupy space on the page, until the page is deallocated by consumers.

• elements that have been consumed, but still have a storage

• raw blocks

If a value or a raw block is too large, it's allocated externally, and the external-flag is set on the con-
trol block. A struct containing a pointer to the external block is allocated in the page in place of the
big element or block.

If the queue is not empty, the head pointer points to the first value of the queue. Values are stored as
a forward linked-list, and are allocated linearly, in container order, with an implementation-defined
granularity (which is the alignment guaranteed for the storage of the value).

To start a put, the tail pointer is advanced to make place for the new value. The newly initialized el-
ement is set to the busy state. When the put is committed or canceled, the busy-flag is removed. If
the put is canceled, the element is destroyed, and the dead-flag is set.

To start a consume, all the values are scanned until the first non-dead and non-busy element is
found. If no such element is found, the try-start-consume function returns an empty consume_opera-
tion. Otherwise the target element is marked as busy, so that the caller gets exclusive access on it.

26

When a consume is committed, the head is advanced past all dead elements. When the head
switches to a different page, the previous page is deallocated.

The storage of an element or a raw block is always properly aligned. Consumers can access the ele-
ment using 3 member functions of the consume-operation:

1. The function element<Type>(), that returns a reference to the complete element, but requires
to specify its type as template argument. If the actual element type does not match the one
specified, the behavior is undefined. Consumers can use the member function is<Type>() to
check if the type is exactly Type.

2. The function element_ptr(), that returns a pointer of type common_type (so in case of fully
heterogeneous queues a void pointer). Conceptually element calls element_ptr and adds a
static_cast and an indirection.

3. The function unaligned_element_ptr(), which is similar to element_ptr, but always returns
a void pointer, which may not be the actual address of the element. To get a pointer to the el-
ement the caller must upper-align the returned address according to the type of the target
value. Conceptually element_ptr calls unaligned_element_ptr and aligns the returned
pointer, after retrieving the alignment from the runtime-type.

The third function is faster and, importantly, it does not access the runtime-type. If only
unaligned_element_ptr is used, the runtime-type is not required to support the feature alignment.
Anyway the pointer returned by unaligned_element_ptr must be aligned somehow. The point of ex-
posing unaligned_element_ptr in the public interface is that a feature of the runtime-type that per-
forms an action (for example that writes the object to an std::ostream) may embed the alignment
step too. This is beneficial for two reasons:

• A feature of the runtime-type knows at compile time the alignment of the type, so it does not
need to store and load it, and executes less instructions.

• Most times the runtime-type does not need to align the address at all. The reason is that the
result of unaligned_element_ptr is guaranteed to be already aligned to a constant value,
specified by the constant min_alignment, provided by all the heterogeneous queues. If the
actual type has an equal or smaller alignment, the alignment step can be skipped at compile
time5.

As shown later, function queues use only unaligned_element_ptr, because that they use a custom
and simplified runtime-type.

5 The features of runtime_type are not exploiting this constant because it is queue-specific. This may change in a
future release.

27

13. The lock-free queue

This paragraph describes the details of lf_heter_queue. The implementations of the other queues
are not covered because:

• heter_queue has an extremely similar layout, but a much simpler implementation.

• conc_heter_queue is just a wrapper of an internal heter_queue protected by an std::mutex.

• sp_heter_queue shares much of it implementation with lf_heter_queue. Only the producer
layer and only in case of multiple producers is distinct.

This is the declaration of lf_heter_queue:

template <
 typename RUNTIME_TYPE = runtime_type<COMMON_TYPE>,
 typename ALLOCATOR_TYPE = void_allocator,
 concurrent_cardinality PROD_CARDINALITY = concurrency_multiple,
 concurrent_cardinality CONSUMER_CARDINALITY = concurrency_multiple,
 consistency_model CONSISTENCY_MODEL = consistency_sequential>
 class lf_heter_queue;

The user may use the last 3 template parameters to set some restrictions on the functionalities and
FIFO consistency. We should exploit these restrictions to provide a more efficient implementation.
There are 2^3 = 8 possible assignments for these parameters, but fortunately we don't need to pro-
vide a different implementation for each of them. To handle the values of these template parameters
lf_heter_queue has a four-level private hierarchy:

28

• The first level is the allocator, that is a user provided type (by default void_allocator).

• The second level is LFQueue_Tail, an internal class template that implements put operations.
Three partial specializations are provided.

• The third level is LFQueue_Head, that implements consume operations. Two partial special-
izations are provided.

• The fourth and last level is lf_heter_queue, the only one that defines public functions (it in-
herits privately from LFQueue_Head). lf_heter_queue uses functionalities from the underly-
ing layers to provide the same interface of all the other queues. No partial specializations are
defined for lf_heter_queue.

The queue is internally a null-terminated linked-list, so that consumers can iterate it without access-
ing the tail for the termination condition. The tail pointer is used only by producers, and the head
pointer is used only by consumers. Beyond slightly less contention, this simplifies the implementa-
tion, and allows to better exploiting reduced cardinalities: if PROD_CARDINALITY is concurrency_sin-

29

gle, the tail pointer is not an atomic variable. Similarly, if CONSUMER_CARDINALITY is
concurrency_single, the head pointer is not an atomic variable. The head and tail layers are aligned
so that they should have their storage in two dinstict cache-lines.

The code below shows the definition of the control block and of the flags encoded in the least sig-
nificant bits of the member m_next.

namespace detail
{
 struct LfQueueControl
 {
 uintptr_t m_next; // raw atomic
 };

 enum NbQueue_Flags : uintptr_t
 {
 NbQueue_Busy = 1,
 NbQueue_Dead = 2,
 NbQueue_External = 4,
 NbQueue_InvalidNextPage = 8,
 NbQueue_AllFlags = NbQueue_Busy | NbQueue_Dead

| NbQueue_External | NbQueue_InvalidNextPage
 };
 ...

The busy-flag is set to a value while a producer is producing it, or while a consumer is consuming
it. The dead-flag is set on values not alive. Consumers scan the queue until they find a m_next that is
not zeroed, and is neither busy nor dead. While an element is being produced (before commit is
called on the put transaction), the element is busy, and not observable. If commit is not called, no
one will ever observe any part of that element.

When a thread starts consuming an element, it sets the busy-flag on the value. If the consume opera-
tion is committed, the element is gone forever. Otherwise, if the consume operation is canceled, the
element reappears in the queue (the busy-flag is cleared). Since the other consumers may have ob-
served the absence of the element between the beginning of the consume and the cancel, the con-
sume is not a transaction.

The class template LFQueue_Tail introduces and manages the tail pointer, and provides the function
try_inplace_allocate, that is used by lf_heter_queue to implement the put and raw allocations:

namespace detail
{
 template <typename RUNTIME_TYPE, typename ALLOCATOR_TYPE,
 concurrent_cardinality PROD_CARDINALITY,
 consistency_model CONSISTENCY_MODEL >
 class LFQueue_Tail : protected ALLOCATOR_TYPE
{

...
template <LfQueue_ProgressGuarantee PROGRESS_GUARANTEE,

uintptr_t CONTROL_BITS, bool INCLUDE_TYPE,

30

size_t SIZE, size_t ALIGNMENT>
Block try_inplace_allocate();

template<LfQueue_ProgressGuarantee PROGRESS_GUARANTEE>
 Block try_inplace_allocate(

uintptr_t i_control_bits, bool i_include_type,
size_t i_size, size_t i_alignment);

...
};

The above code is not actually present in the library, because the general class template is not de-
fined. The first overload can be used for every non-dynamic put (that is when size and alignment
are known at compile-time). The second is used for dynamic puts and raw allocations. The boolean
i_include_type specifies whether a runtime-type should be allocated. i_size and i_alignment are
the size and alignment of the element or raw allocation. The return type is a struct containing a pos-
sibly null pointer to the element (or the raw block), and a pointer to the control block.

Every specialization of LFQueue_Tail allocates either zeroed or non-zeroed memory pages, and pro-
vides a constexpr boolean to communicate to the subsequent layers whether pages should be zeroed
at consume time:

constexpr static bool s_deallocate_zeroed_pages = ...;

Allocating zeroed pages and deallocating non-zeroed page is legal, but this forces the page allocator
to memset a page before recycling it. Consumers, on the other side, can zero this memory while it is
still hot on their cache.

The implementation of the producer layer is split in 3 partial specializations of LFQueue_Tail:

• One for PROD_CARDINALITY = concurrency_single, that allocates non-zeroed pages, and de-
fines s_deallocate_zeroed_page as false.

• One for PROD_CARDINALITY = concurrency_multiple and CONSISTENCY_MODEL =
consistency_relaxed, that allocates zeroed pages, and defines s_deallocate_zeroed_page as
true.

• One for PROD_CARDINALITY = concurrency_multiple and CONSISTENCY_MODEL =
consistency_sequential. This specialization allocates zeroed pages, but does not allow ze-
roing the memory at consume time, because this would break the algorithm. In this case the
cost of zeroing the recycled memory falls to the allocator.

The constructor of LFQueue_Tail looks the same in all the 3 specializations:

constexpr LFQueue_Tail() noexcept
: m_tail(s_invalid_control_block), m_initial_page(nullptr)

{
}

We delay the allocation of the first page, so that the default constructor and the move constructor
can be noexcept and constexpr. The value s_invalid_control_block is such that it will always cause

31

a page overflow in the first put. When the first page is allocated, its address is set to
m_initial_page, so that the consume layer can read it during its delayed initialization. After being
set to the first allocated page, m_initial_page does not change anymore, even when the page it
points to is deallocated.

14. Lock-free queue – the producer layer

The code below is the allocation function for an element or raw block in the case of single producer
(m_tail is not an atomic in this case).

template <LfQueue_ProgressGuarantee PROGRESS_GUARANTEE, uintptr_t
CONTROL_BITS, bool INCLUDE_TYPE, size_t SIZE, size_t ALIGNMENT>
 Block try_inplace_allocate_impl()
 noexcept(PROGRESS_GUARANTEE != LfQueue_Throwing)
{
 auto guarantee = PROGRESS_GUARANTEE; /* used to avoid warnings

about constant conditional expressions */

 constexpr auto alignment = size_max(ALIGNMENT, min_alignment);
 constexpr auto size = uint_upper_align(SIZE, alignment);
 constexpr auto can_fit_in_a_page =

size + (alignment - min_alignment) <= s_max_size_inpage;
 constexpr auto over_aligned = alignment > min_alignment;

 auto tail = m_tail;
 for (;;)
 {
 DENSITY_ASSERT_INTERNAL(address_is_aligned(tail,

s_alloc_granularity));
 void * address = address_add(tail,

INCLUDE_TYPE ? s_element_min_offset : s_rawblock_min_offset);

 // allocate space for the element
 if (over_aligned)
 {
 address = address_upper_align(address, alignment);
 }
 void * const user_storage = address;
 address = address_add(address, size);
 address = address_upper_align(address, s_alloc_granularity);
 auto const new_tail = static_cast<ControlBlock*>(address);

 // check for page overflow
 auto const new_tail_offset = address_diff(new_tail,

address_lower_align(tail, ALLOCATOR_TYPE::page_alignment));
 if (DENSITY_LIKELY(new_tail_offset <= s_end_control_offset))
 {
 /* note: while control_block->m_next is zero, no consumers

may ever read this variable. So this does not need
to be atomic store. */

32

 new_tail->m_next = 0;

 auto const control_block = tail;
 auto const next_ptr = reinterpret_cast<uintptr_t>(

new_tail) + CONTROL_BITS;
 raw_atomic_store(&control_block->m_next, next_ptr,

mem_release);

 m_tail = new_tail;
 return Block{ control_block, next_ptr, user_storage };
 }
 else if (can_fit_in_a_page)
 {
 tail = page_overflow(PROGRESS_GUARANTEE, tail);
 if (guarantee != LfQueue_Throwing)
 {
 if (tail == 0)
 {
 return Block();
 }
 }
 else
 {
 DENSITY_ASSERT_INTERNAL(tail != 0);
 }
 m_tail = tail;
 }
 else
 {
 // this allocation would never fit in a page
 return external_allocate<PROGRESS_GUARANTEE>(

CONTROL_BITS, SIZE, ALIGNMENT);
 }
 }
}

This function is the core of all put operations, and is the interface for subsequent layers. It is still a
private and low-level function. For the single-producer case, the function page_overflow is very
easy to implement, so we will not discuss it.

The following code shows try_inplace_allocate_impl for the case of multiple producers with re-
laxed consistency:

template <LfQueue_ProgressGuarantee PROGRESS_GUARANTEE, uintptr_t
CONTROL_BITS, bool INCLUDE_TYPE, size_t SIZE, size_t ALIGNMENT>
 Block try_inplace_allocate_impl()
 noexcept(PROGRESS_GUARANTEE != LfQueue_Throwing)
{
 auto guarantee = PROGRESS_GUARANTEE; /* used to avoid warnings

about constant conditional expressions /*

 constexpr auto alignment = size_max(ALIGNMENT, min_alignment);

33

 constexpr auto size = uint_upper_align(SIZE, alignment);
 constexpr auto can_fit_in_a_page =

size + (alignment - min_alignment) <= s_max_size_inpage;
 constexpr auto over_aligned = alignment > min_alignment;

 auto tail = m_tail.load(mem_relaxed);
 for (;;)
 {
 void * new_tail = address_add(tail,

INCLUDE_TYPE ? s_element_min_offset : s_rawblock_min_offset);

 if (over_aligned)
 {
 new_tail = address_upper_align(new_tail, alignment);
 }
 void * const user_storage = new_tail;
 new_tail = address_add(new_tail, size);
 new_tail = address_upper_align(new_tail, s_alloc_granularity);

 // check for page overflow
 auto const new_tail_offset = address_diff(new_tail,

address_lower_align(tail, ALLOCATOR_TYPE::page_alignment));
 if (DENSITY_LIKELY(new_tail_offset <= s_end_control_offset))
 {
 /* No page overflow occurs with the new tail */
 if (m_tail.compare_exchange_weak(

tail, static_cast<ControlBlock*>(new_tail),
mem_acquire, mem_relaxed))

 {
 /* Assign m_next, and set the flags. This is very

important for the consumers, because they that
need this write happens before any other part of
the allocated memory is modified. */

 auto const control_block = tail;
 auto const next_ptr = reinterpret_cast<uintptr_t>(

new_tail) + CONTROL_BITS;
 raw_atomic_store(&control_block->m_next,

next_ptr, mem_release);

 return Block{ control_block, next_ptr, user_storage };
 }
 else
 {
 if (guarantee == LfQueue_WaitFree)
 {
 return Block();
 }
 }
 }
 else if (can_fit_in_a_page)
 {
 tail = page_overflow(guarantee, tail);

34

 if (guarantee != LfQueue_Throwing)
 {
 if (tail == nullptr)
 {
 return Block();
 }
 }
 }
 else
 {
 // this allocation would never fit in a page
 if (guarantee != LfQueue_Blocking

&& guarantee != LfQueue_Throwing)
 {
 return Block();
 }
 else
 {
 return external_allocate<PROGRESS_GUARANTEE>(

CONTROL_BITS, SIZE, ALIGNMENT);
 }
 }
 }
}

Unless a page overflow occurs, no page pinning is necessary on the producer side. The reason is
that after that a producer allocates some space (updating m_tail), that space can never be consumed
until it unzeroes m_next and then removes the busy flag.

The are two reasons why this tail provides relaxed consistency instead of sequential consistency:

1. A put first updates the tail pointer, and then writes the member m_next of the control-block it
has just allocated (m_next is zero before that). In the middle of these two writes, other pro-
ducers may successful do other puts (they are not blocked), but for the consumers the queue
is truncated to the first zeroed m_next. So a put may be temporary not observable even to the
thread that successfully has carried it.

2. Consumers are requested to zero the memory while consuming elements. In some cases of
high contention a consumer may see an m_next zeroed by the other consumers, and incor-
rectly consider it an end-of-queue marker.

To implement the sequential consistent version of try_inplace_allocate_impl we have to solve the
two problems above. For this case we allocate in the pages only values requiring at most a number
of bytes equal to the square of s_alloc_granularity (64 by default, so the maximum size allocable
in-page is 4 kibibytes). All other values are allocated with a legacy heap allocation.

To solve the first problem we adopt a two phases tail update. To solve the problem 2 we just ask to
consumers to not zero the memory. Here is the code of the put for sequential consistent queues:

template <LfQueue_ProgressGuarantee PROGRESS_GUARANTEE, uintptr_t CONTROL_BITS,
bool INCLUDE_TYPE, size_t SIZE, size_t ALIGNMENT>

35

 Block try_inplace_allocate_impl()
 noexcept(PROGRESS_GUARANTEE != LfQueue_Throwing)
{
 auto guarantee = PROGRESS_GUARANTEE; /* used to avoid warnings

about constant conditional expressions */

 constexpr auto alignment = size_max(ALIGNMENT, min_alignment);
 constexpr auto size = uint_upper_align(SIZE, alignment);
 constexpr auto overhead =

INCLUDE_TYPE ? s_element_min_offset : s_rawblock_min_offset;
 constexpr auto required_size =

overhead + size + (alignment - min_alignment);
 constexpr auto required_units = (required_size +

(s_alloc_granularity - 1)) / s_alloc_granularity;

 // this will pin a page when pin_new is called
 PinGuard<ALLOCATOR_TYPE> scoped_pin(this);

 bool fits_in_page = required_units < size_min(
s_alloc_granularity, s_end_control_offset / s_alloc_granularity);

 if (fits_in_page)
 {
 auto tail = m_tail.load(mem_relaxed);
 for (;;)
 {
 auto const rest = tail & (s_alloc_granularity - 1);
 if (rest == 0)
 {
 // we can try the allocation
 auto const new_control =

reinterpret_cast<ControlBlock*>(tail);
 auto const future_tail =

tail + required_units * s_alloc_granularity;
 auto const future_tail_offset = future_tail -

uint_lower_align(tail, ALLOCATOR_TYPE::page_alignment);
 auto transient_tail = tail + required_units;
 if (DENSITY_LIKELY(future_tail_offset <= s_end_control_offset))
 {
 if (m_tail.compare_exchange_weak(tail,

transient_tail, mem_relaxed))
 {
 raw_atomic_store(&new_control->m_next,

future_tail + CONTROL_BITS, mem_relaxed);

 m_tail.compare_exchange_strong(transient_tail,
future_tail, mem_relaxed);

 auto const user_storage =
address_upper_align(
address_add(new_control, overhead), alignment);

 return Block{ new_control,

future_tail + CONTROL_BITS, user_storage };
 }
 else
 {
 if (guarantee == LfQueue_WaitFree)

36

 {
 return Block{};
 }
 }
 }
 else
 {
 tail = page_overflow(guarantee, tail);

 if (guarantee != LfQueue_Throwing)
 {
 if (tail == 0)
 {
 return Block();
 }
 }
 else
 {
 DENSITY_ASSERT_INTERNAL(tail != 0);
 }
 }
 }
 else
 {
 /* the memory protection currently used (pinning) is based on

an atomic increment, that is not wait-free */
 if (guarantee == LfQueue_WaitFree)
 {
 return Block{};
 }

 // an allocation is in progress, we help it
 auto const clean_tail = tail - rest;
 auto const incomplete_control =

reinterpret_cast<ControlBlock*>(clean_tail);
 auto const next = clean_tail + rest * s_alloc_granularity;

 if (scoped_pin.pin_new(incomplete_control))
 {
 auto updated_tail = m_tail.load(mem_relaxed);
 if (updated_tail != tail)
 {
 tail = updated_tail;
 continue;
 }
 }

 uintptr_t expected_next = 0;
 raw_atomic_compare_exchange_weak(

&incomplete_control->m_next, &expected_next,
next + NbQueue_Busy, mem_relaxed);

 if (m_tail.compare_exchange_weak(tail, next, mem_relaxed))
 tail = next;
 }
 }
 }
 else

37

 {
 return external_allocate<PROGRESS_GUARANTEE>(

CONTROL_BITS, size, alignment);
 }
}

A producer starts analyzing the value of m_tail. If it is multiple of s_alloc_granularity, then there
isn’t another put in progress. So it:

• Adds to m_tail the required size in bytes divided by s_alloc_granularity. This is enough to
make other consumers realize that a put is in progress, and how much memory this put is al-
locating.

• Setups the control block (that is sets m_next)

• Sets m_tail to point after the allocation

Otherwise, if the tail is not multiple of s_alloc_granularity, the thread tries to contribute to the put
in progress by setupping the m_next member of the incomplete value and setting at the same time
the busy-flag. Then, whether or not the help was successful, it retries its own put.

The producer layer has to allocate a new page when the last one is exhausted. Producers link the
new page using a dead-value, the end-of-page value, that is the only value whose m_next can point
to another page. Before a page is linked to the queue, the member m_next of its end-of-page value is
set to the special value NbQueue_InvalidNextPage, so that producers can use a CAS to set the new
page. To make all the threads agree on the status of this action, the end-of-page value is allocated al-
ways at the same offset from the beginning of the page. So, before allocating it, the producers first
insert a padding dead value before the end-of-page value.

This is the complete put algorithm:

1. advance the tail pointer to make space for the new value. If the updated tail is in the same
page of the previous tail, exit reporting success.

2. if the value would never fit in a page, allocate and return an external block

3. If there is unused space before the end-of-page value, try to allocate a padding dead-value,
and then return to 1.

4. Perform a scoped pin on the current page, to prevent it from being recycled

5. If the member m_next of the end-of-page control block points to a new page, try to advance
the tail pointer to this page.

6. Allocate a new page (initializing the m_next of the end-of-page control-block to
NbQueue_InvalidNextPage)

38

7. Try to link the new page to the end-of-page control-block with a CAS on the m_next of the
end-of-page control block

8. If the CAS of 7. has failed, deallocate the new page

9. Return to 1.

15. Lock-free queue – the consumer layer

The head pointer of every queue points to the first non-dead value. To start a consume, a thread
searches for the first non-dead and non-busy value, starting from the head pointer. If no value is
found, then it returns an empty consume operation. Otherwise it sets the busy flag to the value, and
returns a consume operation bound to it.

When a consume is committed, the consumer clears the busy-flag, and sets the dead-flag. Then it
tries to advance the head pointer to jump all the adjacent dead values, zeroing the memory at the
same time, only if s_deallocate_zeroed_page is true. Whenever the head changes page, the old
page is deallocated.

The consumer layer is implemented by the class template LFQueue_Head. Like for LFQueue_Tail, the
general template is not defined. Two specializations are provided instead: one for the case of single
producer, and one for multiple consumers.

The single-consumer layer does not need to pin pages, because in this case only one thread can
deallocate them. The multiple-consumers layer needs to pin every page in order to access it, because
pages may be deallocated by the other consumers in any moment. So the first step of a consume op-
eration is pinning the head page. Every pinning or unpinning is a read-modify-write operation on a
variable with high contention between consumers, so it is very costly.

Fortunately a consume operation object keeps its current page pinned regardless of whether it has a
consume in progress. This is the reason why recycling a consume operation for multiple consumes
is beneficial for lock-free and spin-locking queues: in this case consumers will do a pin and unpin
only when a page switch actually occurs. In contrast, creating a consume operation object for each
consume causes at least a pin\unpin pair every time.

Most of the code of LFQueue_Head is verbose and wouldn’t add that much to the description above,
so it is not listed here. The code below shows how consumers pin the head page.

 ControlBlock * head = i_queue->m_head.load();

 if (head == nullptr)
 {
 ... lazy initialization ...
 }

 while (!DENSITY_LIKELY(Base::same_page(m_control, head)))
 {

39

 i_queue->ALLOCATOR_TYPE::pin_page(head);

 if (m_control != nullptr)
 {
 i_queue->ALLOCATOR_TYPE::unpin_page(m_control);
 }

 m_control = head;

 head = i_queue->m_head.load();
 }

16. Function queues

Functions queues are queues of callable objects. The signature of the function is provided as tem-
plate argument, similarly to std::function. A function queue may be seen as a queue of std::func-
tion objects.

// put a lambda
function_queue<void()> queue;
queue.push([] { std::cout << "Printing..." << std::endl; });

// we can have a capture of any size
double pi = 3.1415;
queue.push([pi] { std::cout << pi << std::endl; });

// now we execute all the functions
int executed = 0;
while (queue.try_consume())
 executed++;

Function queues have an interface very similar to heterogeneous queues: they support put-transac-
tions, raw blocks, reentrant and non-reentrant operations, try-* operations. Anyway they don't sup-
port dynamic operations and start_* consume functions.

The library provides four function queues, each based on a heterogeneous queue:

• function_queue: not thread safe

• conc_function_queue: thread safe, blocking

• lf_function_queue: thread safe, lock-free

• sp_function_queue: thread safe, spin-locking

Function queues are always fully heterogeneous and don't allow to use a custom type for type era-
sure.

40

template < typename CALLABLE, typename ALLOCATOR_TYPE = void_allocator,
function_type_erasure ERASURE = function_standard_erasure >
 class function_queue;

template < typename CALLABLE, typename ALLOCATOR_TYPE = void_allocator,
function_type_erasure ERASURE = function_standard_erasure >
 class conc_function_queue;

template < typename CALLABLE, typename ALLOCATOR_TYPE = void_allocator,
 function_type_erasure ERASURE = function_standard_erasure,
 concurrency_cardinality PROD_CARDINALITY = concurrency_multiple,
 concurrency_cardinality CONSUMER_CARDINALITY = concurrency_multiple,
 consistency_model CONSISTENCY_MODEL = consistency_sequential >
 class lf_function_queue;

template < typename CALLABLE, typename ALLOCATOR_TYPE = void_allocator,
 function_type_erasure ERASURE = function_standard_erasure,
 concurrency_cardinality PROD_CARDINALITY = concurrency_multiple,
 concurrency_cardinality CONSUMER_CARDINALITY = concurrency_multiple,
 typename BUSY_WAIT_FUNC = default_busy_wait >
 class sp_function_queue;

Every function queue is implemented as an adapter of a heterogeneous queue. Function queues
don’t use runtime_type for type erasure, but rather they implement a custom (and internal) type
eraser. The layout of the type-eraser depends on the template argument ERASURE:

• function_standard_erasure. The type eraser contains two pointers to function: one that
aligns, invokes and then destroys the function object, and another that aligns and then de-
stroys the function object.

• function_manual_clear. The type eraser contains just a pointers to a function that aligns, in-
vokes and then destroys the function object. Function queues with this type erasure can't be
cleared. Furthermore they must be empty when they are destroyed, otherwise the behavior is
undefined.

A value of a function queue is composed by:

• the control block: always an uintptr_t

• the type eraser: one or two pointers, depending on the template argument ERASURE.

• the capture, which may be empty

So, in queues that use function_manual_clear, a capture-less callable object (or a pointer to a func-
tion), consumes the space of two pointers. Anyway, in lock-free and pin-locking function queues,
the size of values is aligned to the constant concurrent_alignment (usually 64 bytes).

	1. Introduction
	Paged memory management
	2. Overview of paged memory management
	3. SingletonPtr
	4. Raw atomics
	5. WF_PageStack
	6. Implementation of the page allocator

	Lifo memory management
	7. The lifo allocator
	8. The data-stack

	Heterogeneous and function queues
	9. Introduction to type erasure
	10. The RuntimeType pseudo-concept
	11. Overview of the heterogeneous queues
	12. Anatomy of a queue
	13. The lock-free queue
	14. Lock-free queue – the producer layer
	15. Lock-free queue – the consumer layer
	16. Function queues

